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A novel methodology for the simulation of 2D thermohaline double diffusive processes,
driven by heterogeneous temperature and concentration fields in variable-density satu-
rated porous media, is presented. The stream function is used to describe the flow field
and it is defined in terms of mass flux. The partial differential equations governing system
is given by the mass conservation equation of the fluid phase written in terms of the mass-
based stream function, as well as by the advection–diffusion transport equations of the
contaminant concentration and of the heat. The unknown variables are the stream func-
tion, the contaminant concentration and the temperature. The governing equations system
is solved using a fractional time step procedure, splitting the convective components from
the diffusive ones. In the case of existing scalar potential of the flow field, the convective
components are solved using a finite volume marching in space and time (MAST) proce-
dure; this solves a sequence of small systems of ordinary differential equations, one for
each computational cell, according to the decreasing value of the scalar potential. In the
case of variable-density groundwater transport problem, where a scalar potential of the
flow field does not exist, a second MAST procedure has to be applied to solve again the
ODEs according to the increasing value of a new function, called approximated potential.
The diffusive components are solved using a standard Galerkin finite element method.
The numerical scheme is validated using literature tests.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

A number of environmental problems require the study of transport dynamics in subsurface systems, e.g. disposal of haz-
ardous, infiltration of leachates from landfills and industrial waste disposals, seawater intrusion in coastal aquifers.

Most of the hydrogeological studies have been addressed in the past of groundwater saturated flow problems by assum-
ing a constant-density of the water and the flow as being driven by pressure differences only. These assumptions imply the
existence of a scalar potential of the velocity field, allowing several analytical solutions.

With the growing interest in the simulation of hydrogeological processes involved in the management of natural re-
sources, it has been recognized that the assumption of constant water density is no longer adequate for the simulation of
flow fields in the above mentioned cases.

Thermohaline processes are connected with the presence of heterogeneous temperature and concentration fields and
convective currents arise from heat and salinity gradients acting simultaneously. Groundwater density may vary as result
of either pressure, either pollutant/salt concentration, either temperature variations. Density differences produce convective
. All rights reserved.
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currents and density gradients introduce gravitational instabilities that give rise to recirculating groundwater systems. Such
phenomena are usually indicated as density driven flows.

The partial differential equations (PDEs) governing system is given by the mass conservation equation of the fluid phase,
by the Darcy formula for the velocity and by the advection–dispersion transport equations of the heat and the contaminant
solute.

In the past decades, finite-differences (FD) and finite element (FE) methods have been widely employed to solve the non-
linear coupled balance equations for variable-density groundwater problems [16]. FE methods based on the primitive vari-
ables fluid pressure and flow velocity components have been proposed and used by Segol et al. [48], Huyakorn and Taylor
[33] and Diersch [13,14].

Because the Darcy flux is embedded in the continuity equation as function of the spatial gradient of the piezometric head
h, a careful handling of the derivative terms is required. The use of only piecewise continuous basis functions for h generate
velocity fields with discontinuities across elements boundaries. In this case, according to Diersch and Kolditz [16], the non-
unique value of the velocity across the element boundary could generate spurious vertical velocity components due to the
inappropriate balance approximation of the lower order term (rh), constant inside the element when using linear basis
functions, and the higher order gravitational buoyancy term, varying linearly inside the element assuming the same basis
functions for concentration and temperature.

Several techniques have been proposed to circumvent this problem. Voss and Souza [53] used in 2D a reduced-order
approximation of the buoyancy terms. Averaging the concentration inside each element, the pressure gradients and the con-
centration distribution are constant in space when linear basis functions are used. Herbert et al. [31] introduced a mixed
interpolation strategy in the NAMMU 2D code, where pressure is approximated by quadratic elements to obtain linearly dis-
tributed pressure gradients which becomes consistent with linear distribution of the concentration-dependent buoyancy
term.

Many numerical methods proposed in literature originate from the splitting of the advective flux components from the
diffusive ones into different PDEs containing separately the advective and the diffusive terms. The PDEs are discritized in
space and time, each with the technique deemed most appropriate. Most often, explicit time-stepping for advective fluxes
are combined with implicit time-stepping for dispersive/diffusive fluxes. Eulerian–Lagrangian schemes [7,42] and Eulerian–
Godunov schemes [8–11] belong to these kinds of splitting methods.

For the advective components of the transport equation some authors (see for example [37–39]) adopt high resolution
triangular finite volume (FV) discretization, combined with an implicit mixed hybrid finite element (MHFE) scheme for
the solution of the flow equation and of the diffusive components in the transport equation. MHFE methods compute a veloc-
ity field which is very good for the solution of the next convective transport problem with the FV methods, since the normal
velocity components are continuous across the inter-element boundaries. This avoids mass balance errors in the solution of
the transport equations due to inaccuracies in the evaluation of the fluxes through the element interfaces. In addition, the
use of a dual mesh for the FV scheme is no necessary if a MHFE method is applied for the discretization of the diffusive
components.

Because of the explicit time discretization, most often the solution of the advective components is limited by the cou-
rant (CFL) stability requirement on the size of the time step, while, because of the implicit time discretization, there is no
restriction on the time step of the MHFE. This implies that different time steps are used for the solution of the advection
and of the diffusion problems. Solution of the advective components is carried out by applying na times the FV scheme
using a time step size Dta = Dt/na. Values of na and Dta vary inside the computational domain according to the CFL
restriction.

In the present paper, a novel methodology for the simulation of 2D thermohaline double diffusive processes, with heter-
ogeneous temperature and concentration fields in variable-density saturated porous media, is presented.

The governing equations system is solved applying a fractional time step procedure, by means of a mixed finite volume/
finite element method (FV/FE). The inviscid terms of the problem are discretized by means of a marching in space and time
(MAST) scheme. This is a Finite Volume scheme, recently proposed for the solution of the fully dynamic 1D and 2D shallow
water equations [3,4,41,43,51] as well as for the solution of convection dominated problems [2,5]. MAST is particularly suit-
able for the solution of inviscid flows because it allows a direct solution of entirely convective problems and has shown
unconditional stability with regard to the time step size. The viscous terms of the problems are discretized by means of a
standard Galerkin piece-wise linear finite element method, which allows a careful reconstruction of head spatial gradients
on irregular domain. Because of the unconditional stability with regard to the time step size, iterative procedure for the solu-
tion of the advective components is not necessary in the proposed procedure and the same constant time step is used for
both the FV and FE schemes.

The extension of the proposed MAST FV/FE procedure to the general 3D case, without the help of the stream function for
the velocity field estimation, is finally outlined.
2. Physical model assumptions and governing equations system

The medium is assumed to be saturated with a single liquid phase, composed of Ns miscible chemical species, with den-
sity qk and concentration Ck, k = 1, . . . ,Ns. In the following, only one chemical soluble specie is assumed (k = Ns = 1).
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The governing equations for the coupled mass and heat transport in saturated porous media form a partial differential
equations (PDEs) non-linear system given by the flow equation as well as by the transport equations of the contaminant
phase and of the heat [19].

The system is assumed to be symmetrical with respect to any vertical plane, with directions x1 (horizontal) and x2 (ver-
tical). Due to this simplification, the 2D assumption is made and the flow equation is formulated in terms of mass-based
stream function [22].

Generally, continuity equation of the liquid phase can be written as
r � ðqqÞ ¼ 0; ð1Þ
where q is the fluid density and q is the Darcy velocity whose components along x1 = x and x2 = z directions are qx1
and qx2

.
The general form of the Darcy’s law for variable-density conditions is [6]:
q ¼ � k
l
ðrpþ qgrx2Þ; ð2Þ
where k is the permeability tensor, l is the fluid viscosity, p is the fluid pressure, g is the gravitational acceleration and x2 is
the upward coordinate aligned with gravity. Using freshwater as reference fluid, the equivalent freshwater head can be de-
fined as
h ¼ p
q0g
þ x2; ð3Þ
where q0 is the freshwater density and the Darcy’s law in Eq. (2) becomes:
q ¼ � k
l
ðq0grhþ ðq� q0Þgrx2Þ: ð4Þ
According to Eq. (4), fluid flow is caused by two driving forces: the piezometric head difference (where the head is referred to
a fictitious fluid with density q0) and the buoyancy force acting on a fluid of density q imbedded in a fluid with density q0.

In cases of constant-density flow problems, the hydraulic head is a potential function that completely describes the flow
field; equipotentials are everywhere normal to the flow lines and the stream function and the hydraulic head satisfy the
Cauchy–Riemann conditions [6].

In variable-density groundwater problems, flow is not described by a potential function. In these cases the stream func-
tion relates flow directly to vorticity arising from lateral density gradient [12]. Call W the scalar function ‘‘mass-based stream
function” describing the flow field [22]:
qqx1
¼ � @W

@x2

qqx2
¼ @W

@x1

(
)

qx1
¼ � 1

q
@W
@x2

qx2
¼ 1

q
@W
@x1

(
: ð5Þ
By substituting the Darcy’s law into the continuity Eq. (1), after some manipulations one gets [22]:
r � K
jKj

1
qlr
� rW

� �
¼ � @qr

@x1
; ð6Þ
where K = kq0g/l0 is the freshwater hydraulic conductivity tensor, lr = l0/l is the relative viscosity, l0 is the reference
freshwater viscosity and qr = (q � q0)/q0 is the relative density.

The use of the stream function implies steady-state flow or negligible storage changes. While this is not a severe assump-
tion in free convection problems, it could become inappropriate for the simulation of transient flow near pumping wells. An-
other disadvantage in the use of the stream function formulation is the difficulty in specifying internal heat, pollutant and
fluid sources and/or sinks, owing to consequent discontinuities in W [22].

On the other hand, the use of the stream function allows a more precise estimation of the flow field, that should be other-
wise estimated by means of Eq. (2), where the two terms in the brackets have different approximation order [16].

The transport equation for pollutant and heat are given by [16,17,25]:
@ðeCÞ
@t
þr � ðqCÞ � r � ðD � rCÞ ¼ QC ; ð7Þ
where C is the mass concentration of the solute component, QC is the sink/source of the solute component and D is the tensor
of hydrodynamic dispersion. Similarly, the heat transport equation can be written as
@ððeqcl þ ð1� eÞqscsÞTÞ
@t

þ qclr � ðqTÞ � r � ðK � rTÞ ¼ Q T ; ð8Þ
where T is the temperature, qs is the solid phase density, qcl and qscs are the thermal capacity of the fluid and the solid
respectively (assumed constant in space and time), QT is the sink/source of the heat and K is the tensor of the hydrody-
namic–thermo-dispersion. In deriving Eq. (8), equilibrium between liquid and solid temperature has been assumed.
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The PDEs governing system is given by the flow Eq. (6) and by the transport equation for pollutant and heat (Eqs. (7) and
(8)).

To close the set of the governing equations the following constitutive relationships are needed:

(1) The equation of state (EOS), defining the dependence of the fluid density on the pollutant concentration and on the
temperature [16,17]:
q ¼ q0ð1þ
�a

ðCs � C0Þ
ðC � C0Þ � �bðT � T0ÞÞ; ð9Þ

where �a is the fluid density difference ratio, Cs is the maximum concentration value, �b is the fluid expansion coefficient
and sub-index 0 indicates the reference values of concentration and temperature;
(2) The tensor of hydrodynamic dispersion D, given by [16,17]:
D ¼ ðeDd þ bT jqjÞIþ ðbL � bTÞ
q� q
jqj ; ð10Þ

where Dd is the molecular diffusion coefficient of the fluid, bL and bT are the longitudinal and transverse coefficients of
the solute dispersivity, jqj is the absolute specific Darcy fluid flux and dij is equal to 1 if i = j, otherwise it is equal to
zero;
(3) The tensor of the hydrodynamic–thermo-dispersion K, given by [16,17]:
K ¼ Kcond þ Kdisp; Kcond ¼ ðekl þ ð1� eÞksÞI; Kdisp ¼ qcl aT jqjIþ ðaL � aTÞ
q� q
jqj

� �
; ð11Þ

where kl and ks are respectively the thermal conductivity of the liquid and solid phase and aL and aT are the longitu-
dinal and transverse thermodispersivity coefficients of the liquid phase;
(4) The liquid viscosity l, function of the pollutant concentration and of the temperature, as further specified.
The mass conservation equation for the liquid phase (Eq. (1)) leads to:
r � q ¼ �q � rq
q

; ð12aÞ
and according to the EOS, Eq. (12a) can be written in the following form:
r � q ¼ �q
q0

q
�

�a
Cs � C0

rC � �brT
� �

: ð12bÞ
Substituting the divergent terms in the conservation Eqs. (7) and (8), one gets:
e
@C
@t
þ 1�

�a
Cs � C0

C
q0

q

� �
q � rC þ �bC

q0

q
q � rT �r � ðD � rCÞ ¼ QC ; ð13Þ

ðeqcl þ ð1� eÞqscsÞ @T
@t
þ qcl 1þ �bT

q0

q

� �
� q � rT � qcl �a

Cs � C0
T
q0

q

� �
� q � rC �r � ðK � rTÞ ¼ QT ; ð14Þ
where porosity changes in time have been assumed to be negligible.
The difficulties in managing internal sinks/sources when fluid mass continuity equation is formulated in terms of stream

function, mentioned before, can be circumvented by considering the source point as an external boundary (see Fig. 1(b) as
opposite to Fig. 1(a)) and by modifying the boundary conditions. Similarly, in the pollutant and heat transport equations the
sink/source points are treated as external boundary, properly changing the boundary conditions and the source terms on the
r.h.s. of Eqs. (13) and (14). Finally, the PDEs governing system can be written as
a b

Fig. 1. FE representation of an injection (abstraction well) as (a) distributed source (sink); (b) external boundary (adapted from [25]).
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r� K
jKj

1
qlr
� rW

� �
¼� @qr

@x1
;

e
@C
@t
þ 1�

�a
Cs � C0

C
q0

q

� �
q � rCþ �bC

q0

q
q � rT �r � ðD � rCÞ ¼ 0;

ðeqcl þ ð1� eÞqscsÞ@T
@t
þqcl 1þ �bT

q0

q

� �
�q � rT �qcl �a

Cs � C0
T
q0

q

� �
�q � rC�r � ðK � rTÞ ¼ 0:

ð15Þ
3. A mixed FV/FE method for the solution of the PDEs governing system

3.1. Dual finite volume mesh

Discretization of system (15) is carried out on a generally unstructured triangular mesh. Let X � R2 be a bounded domain,
Xh a polygonal approximation of X and Th an unstructured Delaunay-type triangulation of Xh. The triangulation Th is called
basic mesh and the triangle eT is called primary element. Let Ph = {Pi, i = 1, . . . , J} the set of all vertices of all eT 2 Th and J a suit-
able index set. The dual mesh Eh = {ei, i = 1, . . . , J} is constructed over the basic mesh. The dual finite volume ei associated with
the vertex Pi is the closed polygon given by the union of sub-triangles resulting from the subdivision of each triangle of Th

connected to node Pi by means of its axes (see Fig. 2). In the following of the paper the dual volumes e are called also cells.
The sub-triangles are called secondary elements and are indicated as eII. Cells ei satisfy:
X ¼ [ei: ð16Þ

The boundary of ei is denoted as @ei and the outward normal unit vector to @ei is denoted as n (see Fig. 2). The cells satisfy:
ei \ ej ¼ fx : x 2 @ei and x 2 @ejg: ð17Þ

The choice of the centre of axes instead of the centre of gravity of each triangle is motivated in Appendix 1.

3.2. Integral form of the PDEs governing system

3.2.1. The case of constant-density groundwater transport problem
We derive first the proposed numerical procedure for a constant-density q = q0 groundwater flow problem, where, as pre-

viously specified, a scalar potential function given by the hydraulic head completely describes the flow field. In this case, the
continuity Eq. (1) simplifies in the following one:
r � q ¼ 0; ð18Þ
The continuity Eq. (6) expressed in terms of stream function W becomes a classical Laplace equation with zero source term:
r � K
jKjrW
� �

¼ 0: ð19Þ
Assume a general system of balance laws:
@U
@t
þr � FðUÞ ¼ BðUÞ þ r � RðUÞ; ð20Þ
where U is the vector of the unknown variables, F(U) represents the convective flux term vector, B(U) is the source term and
R(U) represents the diffusive fluxes. Applying a fractional time step procedure to system (20), we set:
ie
n

secondary element

Pi

D

C

B

A

F

ei

eT

∂

Fig. 2. The basic mesh and the dual finite volume mesh.
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FðUÞ ¼ FpðUÞ þ ðFðUÞ � FpðUÞÞ;
BðUÞ ¼ BpðUÞ þ ðBðUÞ � BpðUÞÞ;
RðUÞ ¼ RpðUÞ þ ðRðUÞ � RpðUÞÞ:

ð21Þ
where Fp(U), Bp(U) and Rp(U) are, respectively a suitable numerical convective flux term, source term and diffusive flux term,
further defined.

After integration in time, system (20) can be split in the two following ones:
Ukþ1=2 � Uk þr �
Z Dt

0
Fpdt ¼

Z Dt

0
Bpdt þr �

Z Dt

0
Rpdt; ð22aÞ

Ukþ1 � Ukþ1=2 þr �
Z Dt

0
Fdt �r � Fp ¼

Z Dt

0
Bdt � Bp þr �

Z Dt

0
Rdt �r � Rp; ð22bÞ
we call systems (22a and b) prediction and correction systems, respectively and Fp, Bp and Rp are the mean values of the
numerical convective flux, source and diffusive flux terms computed during the prediction step; Uk+1 and Uk+1/2 are the un-
known variables computed respectively at the end of the prediction and the correction phase. Observe that summing sys-
tems (22a and b), the integral of the original system (20) is formally obtained. The numerical corrected solution will be
close to the one of the original system (20) as far as the difference between the predicted and original convective and dif-
fusive fluxes and source terms is either small or time-independent. The advantage of using formulation (22) instead of (20) is
that, with a suitable choice of the prediction terms Fp(U), Bp(U) and Rp(U), each of the two systems (22a and b) can be much
easier to solve than the original system (20).

For the transport of pollutant and heat in a constant-density groundwater field, we set:
U ¼ W C Tð ÞT ; ð23aÞ

F ¼

0
1
e qC

qcl

eqclþð1�eÞqscs qT

0BB@
1CCA; Fp ¼

0
1
e qkC

qcl

eqclþð1�eÞqscs qkT

0BB@
1CCA;

B ¼
0
0
0

0B@
1CA; Bp ¼

0
ðD � rCÞk

ðK � rTÞk

0B@
1CA; R ¼

� K
jKj � rW

D � rC

K � rT

0B@
1CA; Rp ¼

0
0
0

0B@
1CA;

ð23bÞ
in the prediction step we assume the flow velocity field as function of the gradients of W computed at the end of the previous
time step:
qx1
¼ � 1

q0

@Wk

@x2
; qx2

¼ 1
q0

@Wk

@x1
: ð24Þ
The velocity is assumed constant during the given time step; the argument of the integral prediction system (22a) can be
written as
e
@C
@t
þ q � rC ¼ r � ðD � rCÞk; ðeqcl þ ð1� eÞqscsÞ @T

@t
þ qclq � rT ¼ r � ðK � rTÞk ð25Þ
where the equation corresponding to the liquid continuity equation changes into an identity. Observe that the two equations
in system (25) differ from the original one (15) in the time level of the gradients of W in the expression of velocity in Eq. (24)
and of the diffusive fluxes.

The argument of the integral correction system (22b) can be written as
r � K
jKj

� �kþ1=2

� rW

 !
¼ 0; e

@C
@t
�r � ðDkþ1=2 � rCÞ ¼ �r � ðD � rCÞk

ðeqcl þ ð1� eÞqscsÞ @T
@t
�r � ðKkþ1=2 � rTÞ ¼ �r � ðK � rTÞk; ð26Þ
where the index k + 1/2 indicates the values computed at the end of the prediction step.
Observe that in the second and third Eq. (26), the difference between the pollutant and heat convective fluxes and their

corresponding mean values computed during the prediction phase is neglected. Observe also that system (26) has been lin-
earized assuming the values of both tensors D and K as well as the value of the term K

jKj

� �
equal to the ones computed at the

end of the prediction step.
After simple manipulations, systems (25) can be written in quasi-linear form as
@U
@t
þ Ax1

1

@W
@x1

@C
@x1

@T
@x1

0BB@
1CCAþ Ax2

1

@W
@x2

@C
@x2

@T
@x2

0BB@
1CCA ¼

0
r � ðD � rCÞk

r � ðK � rTÞk

0B@
1CA; ð27Þ
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where matrices Ax1
1 and Ax2

1 are given by
Ax1
1 ¼

0 0 0
0 1

e qx1
0

0 0 1
ðeqclþð1�eÞqscsÞ qx1

qcl

0B@
1CA and Ax2

1 ¼
0 0 0
0 1

e qx2
0

0 0 1
ðeqclþð1�eÞqscsÞ qx2

qcl

0B@
1CA: ð28Þ
It is easy to show that the eigenvalues of matrices Ax1
1 and Ax2

1 are k1 = 0, k2 ¼ 1
e qx1ðx2Þ and k3 ¼ 1

ðeqclþð1�eÞqscsÞ qx1ðx2Þqcl; this im-

plies that the first eigenvalue is zero and the sign of the second and the third one is always the same of the corresponding
velocity components; the solution of system (25) is equivalent to the solution of a single non-linear convection equation,
function of the gradient of the stream function at time level tk, while system (26) has the functional characteristics of a pure
diffusive process. For these reasons we call the prediction and the correction systems, respectively convective prediction sys-
tem and diffusive correction system.

We solve the prediction step using a FV procedure and the diffusive step using a FE formulation.
For the prediction step, we assume a first spatial approximation order (piecewise constant) of variables C and T inside

each cell.
The convective volume concentration and heat fluxes through the jth side of the dual volume e are given by
FLe
C;j ¼ Ce½qeII;j

x1
ðxe

2;jp � xe
2;jÞ � qeII;j

x2
ðxe

1;jp � xe
1;jÞ�; FLe

T;j ¼ Te½qeII;j

x1
ðxe

2;jp � xe
2;jÞ � qeII;j

y ðxe
1;jp � xe

1;jÞ�; ð29Þ
where jp is the node of e following node j in counter-clock wise direction, eII,j represents the jth secondary element of e, qeII;j

x1

and qeII;j

x2
are the velocity components in the secondary element and Ce and Te are the values of concentration and temperature

of volume e. The volume concentration and heat fluxes are defined as
Fe
CðTÞ;j ¼ FLe

CðTÞ;j if FLe
CðTÞ;j > 0; Fe

CðTÞ;j ¼ �FLep
CðTÞ;m if FLe

CðTÞ;j 6 0; ð30Þ

where ep is the dual volume sharing side m with e.

After integration in space and time, applying the Green theorem to both convective and diffusive fluxes and discretizing
the diffusive fluxes using a standard Galerkin formulation, prediction system (25) becomes:
e
Ckþ1=2

e �Ck
e

Dt
reþ 1

Dt

X
j¼1;Nlp

Z
Dt

Fe
C;jdt¼�

Z
X

Dk
ij
@wn

@xi

@wm

@xj

� �
Ck

mdX;

ðeqclþð1�eÞqscsÞT
kþ1=2
e �Tk

e

Dt
reþqcl 1

Dt

X
j¼1;Nlp

Z
Dt

Fe
T;jdt

¼�
Z

X
Kk

ij
@wn

@xi

@wm

@xj

� �
Tk

mdX; n;m¼1; . . . ;N; i;j¼1;2; ð31Þ
where re is the area of cell e (the area of the polygon ABCDF in Fig. 2), Nlp is the number of sides of cell e, w is the shape
function, equal to the weight function in the Galerkin formulation, X represents the 2D integration domain and N is the num-
ber of nodes in the domain. The integrals on the r.h.s. of system (31) represent the diffusive fluxes, function of the values of C
and T as well as of the respective tensors D and K computed at the end of the previous time step.

If node e lies on the external boundary, the term of the convective fluxes 1
Dt

P
j¼1;Nlp

R
Dt Fe

CðTÞ;jdt can be rewritten as
1
Dt

P
j¼1;Nlp

R
Dt djF

e
CðTÞ;jdt þ 1

Dt

R
Dtð1� djÞQ b;e

CðTÞdt, where dj is equal to 1 or 0 if side j is, respectively an internal side of the polygon

around node e, or not. Q b;e
CðTÞ is the pollutant (heat) supply or sink of cell e, depending on the flux sign and is assigned as Neu-

mann condition if the flux enters the domain. The flux across side e–ep is divided evenly between nodes e and ep, as shown in

Fig. 3 and the flux Qb;e
CðTÞ is given by the sum of the fluxes across the two external half-sides sharing node e (see Fig. 3).
e ep

( )
eb
TCQ ,

external boundary

Fig. 3. External flux.
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After the computation of the prediction components, the correction problem is solved assuming a second spatial approx-
imation order (piecewise linear) for the unknown stream function, concentration and temperature. The diffusive correction
system becomes (see Appendix 1):
Z

X

Kij

jKj

� �kþ1=2
@wn

@xi

@wm

@xj

 !
WmdX ¼ 0 i; j ¼ 1;2;

e
Ckþ1

e � Ckþ1=2
e

Dt
re þ

Z
X

Dkþ1=2
ij

@wn

@xi

@wm

@xj

� �
CmdX ¼

Z
X

Dk
ij
@wn

@xi

@wm

@xj

� �
Ck

mdX;

ðeqcl þ ð1� eÞqscsÞ T
kþ1
e � Tkþ1=2

e

Dt
re þ

Z
X

Kkþ1=2
ij

@wn

@xi

@wm

@xj

� �
TmdX ¼

Z
X

Kk
ij
@wn

@xi

@wm

@xj

� �
Tk

mdX: ð32Þ
Observe that summing systems (31) and (32), the integral of the original system (20) is formally found again.
Because a scalar potential of the flow field exists, convective prediction system can be solved using a marching in space

and time (MAST) procedure [2–4]. In this case it is always possible to order the cells in the computational domain according
to their potential value and solve them sequentially, one after the other, from the highest to the lowest potential value. Be-
cause of the sign of the eigenvalues of the Jacobians Ax1

1 and Ax2
1 , it is possible to solve each Eq. (25) if a polynomial approx-

imation of the pollutant and heat volume convective fluxes entering from the upstream (in the potential scale) cells is always
known.

Assume to know the pollutant and heat volume convective fluxes incoming from the boundary to any generic boundary
cell e; these fluxes are given by polynomial time approximation, as will be further specified. According to this hypothesis,
Eq. (31) can be solved as a system of two ordinary differential equations (ODEs) to be integrated in time from 0 to Dt.
After the ODEs system in cell e is solved, the average leaving fluxes required for the solution of the downstream (in
the potential scale) cells can be computed by partitioning the computed leaving flux through the sides of cell e shared
with other downstream volumes.

The basic idea of the numerical technique is to compute the solution, within a given time step, by marching in space
along the flux direction throughout the computational domain.

The three linear systems related to the three equations in system (32) are solved consecutively using a preconditioned
conjugate gradient method; the systems are well-conditioned and the corresponding matrices are symmetric, positive-def-
inite, with order equal to the number of the nodes in the domain. The first system is derived from the first equation in system
(32), in the unknown W. After the solution of the first system, the new spatial gradients of the stream function can be com-
puted. The other two systems are derived from the second and the third equation of system (32), in the unknowns C and T,
respectively, where the velocity components are computed according to the new spatial gradients of W.

3.2.2. The case of variable-density groundwater transport problem
In the case of variable-density groundwater transport problem, a scalar potential of the flow field does not exist.
The original PDEs system (15) can be solved applying a fractional time step procedure similar to the one shown in the

previous section. It is possible to extend the MAST procedure solving an additional convective correction step and using an
auxiliary scalar function, called approximated potential, further defined.

The unknown vector U is
U ¼ W C Tð ÞT : ð33Þ

Assume the flow velocity field to be function of the stream function gradients computed at the end of the previous time step:
qx1
¼ � 1

q
@Wk

@x2
; qx2

¼ 1
q
@Wk

@x1
: ð34Þ
Assume also a scalar value /k
e , called approximated potential, to be known inside each cell at the beginning of each time step.

After integration in time and according to Eq. (22a) we define the prediction step of system (15) as
e
Ckþ1=3

e � Ck
e

Dt
re þ 1
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e
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1þ �beT q0
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� � X
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T;j dtþ

� qcl 1
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eT q0
~q
X
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Z
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Z
X

Kk
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@wm

@xj

� �
Tk

mdX n;m ¼ 1; . . . ;N; ð35Þ
where
Fp;e
CðTÞ;j ¼ maxð0; Fe

CðTÞ;jÞ if /k
e P /k

ep Fp;e
CðTÞ;j ¼ minð0; Fe

CðTÞ;jÞ if /k
e < /k

ep: ð36Þ



1242 C. Aricò, T. Tucciarelli / Journal of Computational Physics 228 (2009) 1234–1274
The first correction system is defined as
e
Ckþ2=3

e � Ckþ1=3
e

Dt
re þ 1

Dt
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�a
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eC q0
~q
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�beC q0
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X
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Z
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Fc;e
T;jdt ¼ 0
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e

Dt
re þ qcl 1
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1þ �beT q0
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� � X
j¼1;Nlp

Z
Dt

Fc;e
T;jdtþ

� qcl 1
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�a
Cs � C0

eT q0
~q
X

j¼1;Nlp

Z
Dt

Fc;e
C;jdt ¼ 0; ð37Þ
where
Fc;e
CðTÞ;j ¼ maxð0; Fe

CðTÞ;jÞ if /k
e < /k

ep Fc;e
CðTÞ;j ¼ minð0; Fe

CðTÞ;jÞ if /k
e P /k

ep; ð38Þ
in Eqs. (36) and (38) fluxes Fe
CðTÞ;j are defined as in Eqs. (29) and (30). If the convective pollutant and heat fluxes are leaving

from cell e, terms eC eT and ~q are the concentration, temperature and liquid density of the cell; in the opposite case, eC , eT and ~q
are the values of concentration, temperature and density of the neighbouring cells, numerically estimated from the single
time values by means of Gaussian integration.

Observe that the source terms are neglected in system (37) since the irrotational components of the fluxes have been
solved in the prediction problem. It can be easily shown that the first correction system has the same functional character-
istics of the prediction system.

According to Eq. (22b), the second correction system becomes:
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jKj
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The system has been linearized assuming the tensors D and K on the l.h.s. of the second and third equations, as well as the
term Kij

jKj
1

qlr

� �
in the first equation, to be the same computed at the end of the first correction step.

We call the prediction system, the first and the second correction systems, respectively convective prediction (CP) system,
convective correction (CC1) and diffusive correction (DC2) systems. Initial conditions of the CC1 system are the final values
of the CP system and initial values of the DC2 system are the final values of the CC1 system. The values computed at the end
of the CP step and at the end of the CC1 step are marked, respectively with index k + 1/3 and k + 2/3. The spatial gradients of
the stream function W for the computation of the velocity field is kept constant in time during both convective systems.

3.3. Solution of the CP and CC1 systems

Observe that, according to the flux definitions given in Eqs. (36) and (38), the flux integrals from cell e to cell ep in the CP step
are only function of the cell e unknowns if /k

e P /k
ep and are only function of the cell ep unknowns if /k

e < /k
ep. In the CC1 step the

opposite holds. This allows to solve each system as a sequence of small ODEs systems, one for each computational cell, after
ordering the cells according to their scalar potential. The priority is given to the cells with higher potential in the CP step and
to the cells with lower potential in the CC1 step. Each ODEs system is integrated along the original time step using a Runge–Kutta
method with adaptive step size control [40]. In the prediction step the ODEs system for the generic cell e is written as
e
dCe
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ð40Þ
Call out the index of any side shared with any cell ep such that /k
e P /k

ep in the CP step (/k
e < /k

ep in the CC1 step). After the
ODEs system of cell e is solved along the time step, the convective concentration and heat fluxes leaving through each side
out have to be estimated in time.

If a 1st order time polynomial reconstruction (constant value in time) is chosen, the mean value of the leaving volume flux
Fp;e

CðTÞ;out through side out is estimated as
Fp;e
C;out ¼ Ce½�qeII;out

x1
ðxe

2;outp � xe
2;outÞ � �qeII;out

x2
ðxe

1;outp � xe
1;outÞ�; Fp;e

T;out ¼ Te½�qeII;out

x1
ðxe

2;outp � xe
2;outÞ � �qeII;out

x2
ðxe

1;outp � xe
1;outÞ�; ð41Þ
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where the sub-index outp indicates the second node of side out in counter-clock wise direction and the over-score sign indi-
cates the mean in time value: �qeII;out

x1
and �qeII;out

x2
are function of the spatial gradients of the stream function (constant in time)

and of the mean in time value of the fluid phase density �qe. This one has to be numerically estimated from the single time
values. In the coded algorithm, density in seven Gauss points, selected in the time interval 0–Dt, has been computed using a
C1 interpolation of the solution values produced by the Runge–Kutta method adopted for the solution of the ODEs system. Ce

and Te are the mean in time value of concentration and temperature in cell e, obtained by solving the following linear system
given by the pollutant and heat mass balance equations:
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p;e
C;j ; ð42Þ
where d1,j is equal to is equal to 1 or 0 if the flux is, respectively leaving or entering the cell. eC and eT represent values of the
concentration and temperature in the cell e numerically estimated from the single time values by means of Gaussian inte-
gration, similarly to �qe. The summations on the l. h. s. of system (42) represent the mean in time values of the incoming pol-
lutant and heat fluxes, known from the solution of the neighbour cells with higher potential. The summation on the r. h. s.
represent the mean in time value of the fluxes leaving from sides out to lower potential cells, expressed as in Eq. (41).

A similar procedure is carried out for the solution of the CC1 system, written as
e
dCe
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re þ 1�

�a
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eC q0
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� � X
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Fc;e
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X
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The polynomial time reconstruction of the leaving fluxes is the same as in the prediction step, replacing in Eq. (42) the time
levels k and k + 1/3 respectively with k + 1/3 and k + 2/3.

3.4. The approximated scalar potential

Fractional step methodology provides accurate results only if the solution of the CP step is close to the final one of the
current step; otherwise, the computation of the spatial gradients at different time levels can strongly affect the solution.
In our case, to minimize the variables change in the CC1 step, it is important to choose an approximated potential with a
gradient flux opposite in sign, as much as possible, to the water flux inside each computational element. If an exact potential
exists and this condition is always attained, CC1 system vanishes in the following identities:
Ckþ2=3 ¼ Ckþ1=3; Tkþ2=3 ¼ Tkþ1=3: ð44Þ

Let’s assign a value of the approximate potential function / at each node and approximate the unknown potential function
according to a Galerkin finite element approach by a trial function /̂ given by
/̂ ¼
X
i¼1;N

wi ~/i; ð45Þ
where w are the shape function related to the potential function and ~/i the unknown coefficients, further specified. We seek
to minimize at the known time level tk the following functional:
F ¼
X

eT¼1;Nel

ð�r/̂� qÞ2; ð46Þ
that is
F ¼
X

eT¼1;Nel

X
m¼1;N

� @wm

@x1

~/m � qeT
x1

 !2

þ
X

m¼1;N

� @wm

@x2

~/m � qeT
x2

 !2
24 35: ð47Þ
The proposed functional is convex and the minimum can be found by setting to zero the partial derivatives with respect to all
the node approximated potentials
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Eq. (48) can be written as
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Eq. (49) represents a linear system in the ~/n unknowns. The matrix of the system is sparse, symmetric, positive-definite and
well-conditioned; the matrix elements are given by
Am;n ¼
X

eT

X
n

@wm

@x1

@wn

@x1
þ @wm

@x2

@wn

@x2

" #
; ð50Þ
and the mth source term of the system is
stm ¼ �
X

eT

X
n

@wm

@x1
qeT

x1
þ @wm

@x2
qeT

x2

" #
; ð51Þ
where the velocity components are computed as
qeT
x1
¼ � 1

�qeT

@WeT

@x2
; qeT

x2
¼ 1

�qeT

@WeT

@x1
: ð52Þ
�qeT is the mean value of the fluid phase density of element eT, given by a weighted mean of the density of its nodes. Spatial
gradients of W and �qeT are computed at time level tk and are kept constant during the time step.

3.5. Boundary conditions for the convective systems

Diffusive pollutant and heat fluxes (second terms on the r.h.s. of Eq. (40)) are assumed zero along both permeable and
impermeable boundaries. To compute the convective fluxes along boundary sides we proceed as follows.

Case (1): Flux through the boundary side is entering the domain. Two possibilities exist. Case (1a): boundary liquid flux
and concentration and/or temperature values are assigned; then the following equalities hold:
Fp;e
CðTÞ;j ¼ BFe

CðTÞ;j with BFe
C;j ¼ Cb;e½qe

x1 ;b;j
ðxe

2;jp � xe
2;jÞ � qe

x2 ;b;j
ðxe

1;jp � xe
1;jÞ� and

BFe
T;j ¼ Tb;e½qe

x1 ;b;j
ðxe

2;jp � xe
2;jÞ � qe

x2 ;b;j
ðxe

1;jp � xe
1;jÞ�; ð53Þ
where qe
x1 ;b;j

and qe
x2 ;b;j

are the assigned boundary velocity components on side j of cell e and Cb,e and Tb,e are the assigned nodal
concentration and temperature values (Dirichlet condition for C and T). Case (1b): only concentration and temperature
boundary values are assigned. In this case Eq. (53) holds, but the boundary velocity components are computed as function
of the spatial gradients of the stream function inside element e computed at the beginning of the time step.

Case (2): The flux through the boundary side is leaving the domain. In this case conditions (29) and (30) hold, where C and
T are computed by solving the ODEs system in the cell with the boundary side and velocity components are computed
according to the values of the density inside the cell and to the spatial gradients of the stream function at the beginning
of the time step.

Case (3): impervious boundary side. The flux through an impervious side is zero and the following relationships hold:
Fp;e
CðTÞ;j ¼ 0: ð54Þ
We assume in cases (1)–(3) the scalar potential immediately outside the boundary sides consistent with the flux sign. This
implies the convective concentration and heat fluxes to be zero in the CC1 step, that is
Fc;e
CðTÞ;j ¼ 0: ð55Þ
3.6. Solution of the DC systems

After the prediction component of C and T are found, a continuous piecewise linear shape is assigned to W, C and T. Moving
from the constant to the linear spatial approximation for C and T, would not change the global mass estimation at the given
time level, if the polygons of the first approximation were delimited with the center of mass of the triangles. Since the axis
centers are used, a small mass error is introduced. This error is balanced in the following by using the area re of the same poly-
gons as the coefficients of the diffusive correction components time derivatives in the FE formulation (see Appendix 1).

The sequential solution of three linear systems, each one associated to each of the Eq. (39), is required; the matrix of the
corresponding systems is symmetric, positive-defined, with order equal to the number of the nodes in the domain.

The first system, in the W unknown, can be written in compact form as
RWW ¼ SW; ð56Þ
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where RW is the stiffness matrix and SW is the source term vector. Elements of RW and SW can be computed as the sum of the
contributions given by the local stiffness matrix and the source term vector of each element in the domain. The RW and SW

terms are:
RWm;n ¼
X
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where the over-score bar indicates the mean values of q, qr and lr inside the triangular element eT, computed at the end of
the convective steps.

After the solution of the first system, the new spatial gradients of the stream function are computed and used for the solu-
tion of the next two systems. These two systems have to be solved in the unknowns C and T and the velocity components
inside each triangular element are computed according to the new spatial gradients of W. The second system can be written
in vector–matrix form as
RCCþ CC
dC
dt
¼ SC ; ð58Þ
where RC and CC are respectively the stiffness and the capacity matrices and SC is the source term vector, given, similarly to
the previous case, by the sum of the local matrices and source term vectors:
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where the over-score sign has the same meaning before specified.
Similarly, the third system in the unknowns T can be written as
RT Tþ CT
dT
dt
¼ ST ; ð60Þ
where the elements of the stiffness matrix RT, of the capacity matrix CT, as well as of the source term vector ST, are given by
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KeT
ij ;D

eT
ij ;K

eT
ij in Eqs. (57), (59) and (61) are the tensors of the hydraulic conductivity, hydrodynamic dispersion and hydrody-

namic–thermo-dispersion of eT, assumed constant inside the triangular element.
A fully implicit time discretization has been chosen for the solution of the systems (56), (58) and (60), that is:
RWWkþ1 ¼ SW; ð62aÞ

RCCkþ1 þ CC
Ckþ1 � Ckþ2=3

Dt
¼ SC ; ð62bÞ

RT Tkþ1 þ CT
Tkþ1 � Tkþ2=3

Dt
¼ ST : ð62cÞ
This guarantees unconditional stability with regard to the time step size. The time discretization provides a diffusive effect
that goes to zero along with the time step size.

3.7. Boundary conditions for the DC systems

3.7.1. Boundary conditions for the stream function
According to the relationships between the stream function and the flow velocity (see Eq. (5)), it can be easily shown that

the appropriate boundary condition for the stream function along the C1 part of the boundary, where the second type (Neu-
mann) boundary condition holds for mass fluxes is
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Wðx1; x2; tÞ ¼ W1ðx1; x2; tÞ onC1; ð63Þ
where W1 is the Dirichlet value of the stream function assigned on C1, equal to:
WðCÞ ¼ W0ðC0Þ þ
Z C

C0

qq0 � ndC; ð64Þ
where n is a unit vector normal to the boundary C. Along the impervious boundaries W is constant. Diffusive flux is com-
puted a posteriori by means of Eqs. (62a) and (57).

It can be also shown [49] that the appropriate boundary condition for the stream function along the C2 portion of the
boundary where the first type (Dirichlet) boundary condition holds for the equivalent freshwater head (or pressure p)
(Eq. (3)) is given by the following second type condition (see Fig. 4).
@W
@n
¼ qq̂ � nC; ð65Þ
where nC is a unit vector parallel to the boundary C2 and qq̂ � nC is the mass flux component parallel to the boundary side
(see Fig. 5). Eq. (65) can be written as [49]:
@W
@n
¼ �KC

@h
@C
þ qr

@x2

@C

� �
qlr; ð66Þ
where the sub-index C indicates properties on the boundary; integrating Eq. (66) over nodal segments of the domain, one
gets:
Γ1Γ1

Γ1

Γ0

ρq0

Fig. 4. Dirichlet boundary conditions for the stream function.

h1
h2

h1

h2

n̂Γn

ΔΓ

1x

2x

Fig. 5. Neumann boundary condition for the stream function.
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@W
@n

DC ¼ �KCðDhþ qrDx2Þqlr ; ð67aÞ
or
1
qlr

1
KC

@W
@n

DCþ qrDx2 ¼ �Dh; ð67bÞ
where DC is the length of the nodal segment of C and Dh and Dx2 are measured along the segment. Along the horizontal
boundaries the relative density term in Eq. (67b) vanishes.

3.7.2. Boundary conditions for concentration and temperature
The first type (Dirichlet) boundary condition is given by
C ¼ C1 on C1; T ¼ T1 on C1; ð68Þ

where C1 and T1 are assigned values of C and T on the selected portion of the boundary C1. The diffusive fluxes are computed
a posteriori by means of Eqs. (62b) and (59), and Eqs. (62c) and (61).

Second type (Neumann) boundary condition: diffusive pollutant and heat fluxes are assumed zero along both permeable
and impermeable boundaries, as previously explained for the boundary conditions of the convective steps.

4. Numerical tests

Benchmark analytical solutions for model validation are not available due to the non-linear nature of the variable-density
flow and transport problem. Therefore a cross-validation of the results obtained by different numerical codes is carried out to
test the proposed scheme.

We present results for four benchmark tests:

(1) The Henry test [29], a classic seawater intrusion problem.
(2) The Henry–Hilleke test [30], to investigate the effects of temperature-dependent density on coastal groundwater flow.
(3) The Elder test [20,21], a free convection problem (fingering problem), presented with and without thermohaline

effects.
(4) The salt-dome test (HYDROCOIN level 1, case 5), presented with and without thermohaline effects.

Two grid-related dimensionless numbers that affect the accuracy of the proposed numerical scheme are the Courant
number CFL and the Peclet number Pe. The first one is defined as
CFL ¼ Dtjqjffiffiffiffiffiffi
re
p : ð69Þ
The second one indicates the ratio between the advective and the diffusive term and is defined as (see for example [37]):
Pe ¼ CFL
re

DtkDk; ð70Þ
where kDk is the norm of the tensor D.
Since a fully implicit time discretization is used for the solution of the DC step, which guarantees unconditional sta-

bility with regard to Dt, CFL is related to the convective steps and both CFL and Pe numbers have been computed using
the area re of the dual volume and a fluid velocity function of the spatial gradients of W computed at the end of the
previous time step.

4.1. The Henry test [29]

In the Henry test the intrusion of a saltwater front inside a confined aquifer initially saturated with uncontaminated
freshwater is computed. It has become a classic benchmark for variable-density flow models because of the existence of a
semi-analytic steady-state solution derived by Henry [29]. In deriving his solution, the author assumed the so called Bous-
sinesq approximation, which neglects the density variation within the mass balance equation of the fluid phase. Density var-
iation is included in the buoyancy term of the Darcy equations only (the second term on the r.h.s. of Eq. (4)). Henry [29]
obtained analytical expressions for the stream function and concentration in the form of Fourier series. Many authors
[1,14,15,17,23,26,33,35,36,46,48,52,53] tested their numerical models with the Henry test. However, no numerical model
has been able to properly reproduce the semi-analytical solution computed by Henry. This may be due also to some of
the approximations adopted by Henry in his original findings, for example, starting from Eq. (1), the Boussinesq approxima-
tion requires perpendicular Darcy velocity vectors and density gradients.

Several numerical models based on different methods give similar results for the Henry test. These include a particle
tracking model by Pinder and Cooper [46], a mixed Eulerian–Lagrangian scheme proposed by Galeati et al. [26], finite ele-
ments methods [23,33,48], the finite element model by the US Geological Survey, SUTRA [52,53], the finite elements codes
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Fig. 6. Henry test: spatial domain and boundary conditions.
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FEFLOW [14,15,17] and ROCKFLOW [35,36] and the combined mixed hybrid finite element and discontinuous finite element
by Ackerer et al. [1].

The spatial domain of the aquifer and the boundary conditions are schematized in Fig. 6 (where c = C/Cmax is the relative
concentration). Boundary conditions for flow are: impermeable top and bottom sides and a constant entering flux at the in-
land vertical side. Hydrostatic pressure is assumed along the vertical boundary of the sea side. At the inland side the con-
centration is zero which corresponds to freshwater. At the coastal side concentration of seawater is set, c = 1. Simulation
parameters of the test are reported in Table 1.

The relationship between the viscosity l and the concentration is [17]:
Table 1
Henry t

Parame

Molecu
Longitu
Transve
Permea
Density
Porosit
Referen
Maxim
Referen
Flux at
l ¼ l0ð1þ 1:85x� 4:1x2 þ 44:1x3Þ;x ¼ 10�6C: ð71Þ
Spatial domain has been discretized with 1600 rectangular isosceles triangular elements (see Fig. 7(a)) and the time step size
is 20 s; the value of the molecular diffusion coefficient Dd is 18.86 � 10�6 m2 s�1. The isopleths 0.25, 0.5 and 0.75 of the max-
imum concentration, the stream function contours and the velocity field obtained by MAST FV/FE are shown in Figs. 8(a)–
8(c) after 120 min, a time long enough to reach steady-state condition. The maximum CFL value is 1.0536 and the maximum
Peclet number is approximately 6.65. In Fig. 8(a) the revised analytical solution proposed by Segol [47] is shown too for the
isopleths 0.25 and 0.5. MAST FV/FE results are in good agreement with the analytical solution. Using a different mesh, with
est – parameters values.

ter Symbol Units Value

lar diffusion coefficient Dd (m2/s) 6.6 or 18.86 � 10�6

dinal solute dispersivity bL (m) 0
rsal solute dispersivity bT (m) 0
bility tensor k (m2) 1.019368 � 10�9

ratio �a=Cs (–) 0.025
y e (–) 0.35
ce fluid density q0 (kg/m3) 1000

um density of the solution qs (kg/m3) 1025
ce fluid viscosity l0 (kg/m/s) 0.001
the inland boundary q (m/s) 8.333 � 10�5

b
a

Fig. 7. Computational mesh.



Fig. 8(a). Henry test: MAST FV/FE computed isopleths (solid lines) versus analytical solution by Segol [47] (circular dots) (Nel 1600).

Fig. 8(b). Henry test: MAST FV/FE computed stream function profiles (Nel 1600).

Fig. 8(c). Henry test: MAST FV/FE computed velocity field (Nel 1600).
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the hypotenuse of the triangular elements orthogonal to the hypotenuses of the previous mesh, very close results are ob-
tained, not shown for brevity.

In Fig. 9 the numerical results computed by MAST FV/FE scheme are compared with the numerical solution by Ackerer
et al. [1] for the same value of Dd. The authors applied a MHFE scheme to solve the flow equation and the diffusive part
of the transport equation and a discontinuous finite element method for the convective part of the transport equation. Acker-
Fig. 9. Henry test: MAST FV/FE computed isopleths (solid lines) versus numerical solution by Ackerer et al. [1] (circular dots) (Nel 256).



Fig. 10(a). Henry test: MAST FV/FE computed isopleths (Nel 400, modified boundary conditions for concentration).

Fig. 10(b). Henry test: FEFLOW computed isopleths [17] (modified boundary conditions for concentration).

Fig. 10(c). Henry test: ROCKFLOW computed isopleths (modified boundary conditions for concentration).
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er et al. [1] discretized the spatial domain with 20 � 10 quadrilateral elements. Results of the MAST FV/FE scheme have been
obtained using a mesh with 256 rectangular isosceles triangular elements with area 0.007813 m2 and a Dt = 50 s. The max-
imum CFL value is 0.77. Comparing MAST FV/FE results in Figs. 8(a) and 9, main differences occur near the upper right-hand
corner, characterized by the highest velocities. In this part of the domain the velocity solution of Ackerer et al. [1] is likely to
be more accurate because of the higher solution order of the method and of the velocity continuity along the triangular ele-
ment sides.

Many authors modified the Henry test with a mixed seawater and freshwater boundary on the left hand side, assuming
seawater concentration from x2 = 0 to x2 = 0.5 m [23]. In Figs. 10(a)–10(c) MAST FV/FE results at steady-state are compared
with the corresponding ones provided by FEFLOW [15,17] and ROCKFLOW [35,36] for Dd = 6.6 � 10�6 m2 s�1 [34]. A mesh
with 400 triangular isosceles elements and a Dt = 50 s has been used in the MAST FV/FE simulations, run with a maximum
CFL number equal to 1.04. FEFLOW and ROCKFLOW simulators are based on the Galerkin FE method and solve the balance
equations written in terms of hydraulic head and mass concentration (FEFLOW) and pressure and mass fraction of pollutant
(ROCKFLOW). The spatial domain is discretized with 200 quadrilateral elements, in FEFLOW simulations and with 581 tri-
angular elements in ROCKFLOW simulations. MAST FV/FE results are in good agreement with the ones provided by both lit-
erature models.

4.2. The Henry–Hilleke test [30]

In 1972 Henry and Hilleke investigated the effects of temperature-dependent density on coastal groundwater flow. The
test simulates seawater intrusion in a confined aquifer where freshwater recharge flows from an inland boundary over more
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Fig. 11. Henry–Hilleke test: spatial domain and boundary conditions.

Table 2
Henry–Hilleke test – parameters values.

Parameter Symbol Units Value

Maximum concentration of the solution Cs (kg/m3) 35.7
Reference concentration C0 (kg/m3) 0
Maximum temperature Tmax (�C) 50
Minimum temperature Tmin (�C) 5
Thermal capacity of fluid qcl (J/m3/�C) 4.182 � 106

Thermal capacity of solid qscs (J/m3/�C) 0
Molecular diffusion coefficient Dd (m2/s) 2.381 � 10�6

Longitudinal solute dispersivity bL (m) 0
Transversal solute dispersivity bT (m) 0
Permeability tensor k (m2) 1.019 � 10�9

Density ratio �a=Cs (–) 0.7 � 10�3

Thermal expansion coefficient �b (�C�1) 0.375 � 10�3

Porosity e (–) 0.35
Thermal conductivity of fluid kl (J/m/s/�C) 9.952 � 102

Thermal conductivity of solid ks (J/m/s/�C) 0
Longitudinal solute thermodispersivity aL (m) 0
Transversal solute thermodispersivity aT (m) 0
Reference fluid density q0 (kg/m3) 1000
Maximum density of the solution qs (kg/m3) 1200
Reference fluid viscosity l0 (kg/m/s) 0.001
Flux at the inland boundary q (m/s) 8.333 � 10�5
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saline water derived from a seawater boundary. Spatial domain and boundary conditions for concentration and temperature
are shown in Fig. 11. Initially aquifer has hydrostatic pressure, with freshwater concentration (C = 0 kg/cm) and isothermal
conditions (T = T0 = Tmin = 5 �C). At t = 0 heat begins to be transported inward from the top, bottom and left boundaries and
seawater begins to intrude the freshwater by moving laterally from the right boundary. Temperature gradients at the top,
bottom and freshwater sides increase vertical freshwater movement and intrusion of seawater at the base of the aquifer
when compared to a similar isothermal case. The coefficients used in the test are reported in Table 2. The dependence of
the viscosity l on concentration and temperature has been neglected.

In Figs. 12(a)–12(b) results by MAST FV/FE are compared with the corresponding ones computed with SUTRA-MS (satu-
rated–unsaturated transport of multiple species) [32] and SEAWAT [50] schemes. In both the numerical procedures the un-
known variables are the fluid pressure, the concentration and the temperature. SUTRA-MS [32] is a modified version of
SUTRA model [52,53], capable of simulating variable-density flow, as well as transport of heat and multiple dissolved species
through variably saturated porous media. SUTRA uses a hybridized Galerkin FE method and implicit finite-difference tech-
nique to solve the fluid mass balance equation and unified energy- and solute-balance equation for variable-density, single-
phase, saturated–unsaturated flow and single-species transport. SUTRA uses bilinear quadrilateral elements in 2D. SEAWAT
[27,28] is a finite-difference code designed to simulate coupled variable-density and transport solute in groundwater flow. In
2006, Thorne et al. [50] proposed a new version of the code that adds the ability to simultaneously model energy and solute
transport.

In MAST FV/FE numerical simulations a mesh with 1250 rectangular isosceles triangular elements and Dt = 60 s have
been used (solid black lines in Fig. 12); the maximum CFL value is 1.54.



Fig. 12(a). Henry–Hilleke test: MAST FV/FE computed isopleths (solid lines) versus SEAWAT [50] results (dashed lines with circular dots) and SUTRA-MS
[32] results (dashed lines with triangular dots).

Fig. 12(b). Henry–Hilleke test: MAST FV/FE computed temperatures.
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In both SEAWAT and SUTRA-MS simulations a mesh of 40 by 40 quadrilateral elements has been used, with the same Dt.
Simulations are stopped after 3.3 h, sufficient for the simulation to reach steady-state conditions.

MAST FV/FE results are in quite good agreement with the ones provided by both models. In Fig. 12(b), temperature pro-
files of both literature models are not distinguishable from the ones provided by MAST FV/FE at the graphic scale.

The effects of the mesh size on the numerical results have been also investigated. In Fig. 12 results computed by MAST FV/
FE using the same Dt and meshes with 3200 and 800 elements (blue and red lines respectively) are compared with the pre-
vious ones obtained with 1250 elements; the maximum CFL values are 3.166 and 1.01, respectively. The effects of the mesh
size are generally negligible, more evident for the smallest concentration values and in the parts of the domain characterized
by the highest flow velocities. In Figs. 13(a)–13(c) the stream function profiles and the velocity field are shown.

4.3. The Elder test [20,21]

Elder [20,21] presented experimental and numerical studies concerning the thermal convection produced by heating the
inferior surface of a porous layer. The flow inside the box was prompted by a vertical temperature gradient. Thermally in-
duced density gradient caused a complex pattern of the denser water throughout the box; for the characteristics of these
patterns, this test is also denoted as fingering problem. This problem was studied both physically, in laboratory with the
use of Hele-Shaw cells, as well as numerically. Elder [21] developed a modified problem with parameters suited to porous
media flow where the density dependence was due by solute variations. This modified test became one of the most used
benchmark problem used for testing density-dependent groundwater codes and it is referred as Elder salt convection
problem.

In the following of the paper we will investigate both the salt convection problem as well as its thermohaline extension.



Fig. 13(a). Henry–Hilleke test: MAST FV/FE computed stream function profiles.

Fig. 13(b). Henry–Hilleke test: MAST FV/FE computed velocity field.
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4.3.1. The Elder salt convection problem
The spatial domain, the initial and the boundary conditions are shown in Fig. 14. The computational domain is a closed

rectangular box with a source of solute located in the central part of the upper boundary. On this part of the boundary a salt
solid surface provides a specified concentration with value c = 1. On all the lower boundary an adsorbing surface guarantees
the concentration c = 0. A zero value of the fluid pressure is assumed at each upper corner; hydrostatic pressure distribution
and zero concentration are assumed initially inside the domain. Fluid flow is driven by fluid density difference. The param-
eters for this problem are given in Table 3. The problem involves total density variation of 20% which makes this a strongly
coupled flow case. The relationship between l and C is expressed by Eq. (71). The problem is symmetrical at x = 300 m so it is
important to investigate the symmetry of the numerical results.

For the numerical simulations a mesh with 1414 equilateral triangular elements (see Fig. 7(b)) with side 12 m and 772
nodes has been used, with Dt = 1 month. The maximum CFL number value is 0.94. In Fig. 15 the computed isopleths are
300 m 

c = 0 

 150 m 

600 m 

c = 1 

Fig. 14. Elder test: spatial domain and boundary conditions.



Table 3
Elder test – parameters values.

Parameter Symbol Units Value

Molecular diffusion coefficient Dd (m2/s) 3.566 � 10�6

Longitudinal solute dispersivity bL (m) 0
Transversal solute dispersivity bT (m) 0
Permeability tensor k (m2) 4.845 � 10�13

Density ratio �a=Cs (–) 0.2
Porosity e (–) 0.1
Reference fluid density q0 (kg/m3) 1000
Maximum density of the solution qs (kg/m3) 1200
Reference fluid viscosity l0 (kg/m/s) 0.001

Fig. 15. Elder test: MAST FV/FE computed isopleths (4, 10, 15 and 20 years).
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shown for 20% and 60% of the maximum concentration at the simulation times T = 4, 10, 15 and 20 years. In Fig. 16 the
numerical results by FEFLOW [34], obtained using a mesh with 1100 quadrilateral elements and 1170 nodes, are shown
too for the same simulation times. The differences between MAST FV/FE and FEFLOW results are significant. These could de-
pend on the physical ‘‘instability” of the Elder problem, that amplifies the effect of the numerical discretization on the final
results. Anyway, the downwelling direction of the central flux is the same in both numerical models.

When dealing with such kind of problem, characterized by formation of fingers, two fundamental questions arise,
namely: the role of the grid size on the accuracy of the numerical solution and the relationship between the number of cap-
tured fingers and the mesh density. A quite coarse mesh with 357 triangular equilateral elements (length side is 24 m) and
212 nodes (level mesh 0th) has been generated and used as the basis for further refinements. At each refinement level i + 1,
each triangle of the previous ith mesh is subdivided in four equal triangles (see Fig. 17). The 0th level mesh has a Dt equal to
2 months; for the next level meshes time step size has been halved, in order to limit the growth of the maximum CFL num-
ber, that ranges from 0.88 to 2.034 from the coarsest to the finest mesh. Peclet number ranges between 4.3 and 5.6. In Figs.
18–21 the computed isopleths are shown for 20 and 60% of the maximum concentration for the five mesh levels and for the
simulation times T = 4, 10, and 20 years (results for the 1st level mesh are the ones shown in Fig. 15).

At early simulation time (4 years) the number of captured fingers vary, increasing with the mesh density from level 0th to
level 2nd; solutions obtained for levels 3rd and 4th are very close to the one for level 2nd. In the numerical results fingers
develop because of the numerical perturbations due to the spatial and temporal discretization. Small perturbations appear in
the numerical solutions at discrete mesh points, causing the inception of fingers. Consequentially, increasing the number of



Fig. 17. Mesh refinement.

Fig. 16. Elder test: FEFLOW [34] computed isopleths (4, 10, 15 and 20 years).
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mesh points, the number of captured fingers increases. At higher simulation times, except for the coarsest mesh level (0th),
the number of the fingers is the same because of the effect of the dispersion phenomena, responsible for the coalescence of
smaller fingers into larger ones.

Observe also that at the simulation time 20 years, for the coarsest level mesh (namely level 0th), the flow upwells in the
middle section of the domain; refining the mesh (levels 1st, 2nd, 3rd and 4th), a downwelling flow appears. The inversion of
the central flow due to the mesh refinement has been observed by other authors in literature, as summarized in Table 4.
Observe that refining the computational mesh size, the central flow direction remains the same in MAST FV/FE results, while
its changes in other literature numerical model tests.

4.3.2. The Elder thermohaline problem
The salt convective Elder problem is expanded to a thermohaline convection process if the salinity field is coupled with a

thermal distribution. The aquifer is permanently heated from below and the salinity gradient acts from above. The normal-
ized concentration on the top side of the domain is equal to the maximum value in the central part and the salinity is held at
zero on the bottom side. The top and bottom boundaries are held at constant temperature as shown in Fig. 22. All remaining
boundaries are assumed impervious for solute and adiabatic for heat. All the boundaries are impervious for the fluid flow.
Model parameters are listed in Table 5. The relationship between l and C and T is given by [17]:
l ¼ l0
ð1þ 1:85x� 4:1x2 þ 44:1x3Þ
ð1þ 0:70631� 0:04813Þ x ¼ 10�6C 1 ¼ T � 150

150
: ð72Þ
The thermohaline Elder problem can be considered as a mixed double diffusive convection process, where a finger regime
dominates at the beginning (cool salinity sinks down) and later a more diffusive regime occurs for effect of the heating



Fig. 18. Elder test: MAST FV/FE computed isopleths – level mesh 0th (4, 10 and 20 years).
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(downsunk salinity is heated from below). The same mesh as the one used in the salt convection problem with 1414 ele-
ments has been used with the same time step size (1 month) (see Section 4.3.1). The maximum CFL value is 1.12. Computed
isopleths of 20% and 60% of the maximum concentration and temperature contours are shown in Figs. 23(a)–23(c), 24(a)–
24(c), 25(a)–25(c), Figs. 26(a) and 26(b) at the simulation times 4, 10 and 20 years, for different values of the thermal gra-
dient DT.

A similar mesh refinement test has been carried out as in the salt convection test. DT used for these simulations is 400 K.
Maximum CFL value ranges from 0.89 to 2.1, going from the coarsest to the finest mesh. In Figs. 26(a)–26(d) isopleths of 20%
and 60% as well as temperature contours are shown after 20 years (results for the 1st level mesh are the ones in Fig. 25(c)).
Numerical results are symmetric. Except for the coarsest mesh, mesh size effects seem to be negligible; the central flow is
downwelling as previously observed for the salt convection problem, without any inversion of the flux direction. Diersch and
Kolditz [16] and Diersch [17] obtained by FEFLOW asymmetric salinity profiles for high DT values (>200 K) and very fine
mesh (9900 quadrilateral elements) (see Fig. 27).

4.4. The salt-dome test

The test case is an idealization of the flow over a salt-dome, where the geometry is greatly simplified. The attention is
directed to the physics of flow of a non-homogeneous fluid, whose density is depending on the salt concentration in the salt
convection problem and by both salt and temperature gradient in the thermohaline extension.



Fig. 19. Elder test: MAST FV/FE computed isopleths – level mesh 2nd (4, 10 and 20 years).
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4.4.1. The salt-dome salt convection–diffusion problem
The geometry and boundary conditions of this test are shown in Fig. 28. The domain extends horizontally to 900 m and

vertically to 300 m. The aquifer is assumed homogeneous and isotropic. The hydraulic head varies linearly on the top of the
aquifer. The concentration is taken equal to zero on the top and on the left upstream boundary. The central part of the bot-
tom boundary (300 6 x 6 600) represents the top of the salt-dome with relative concentration equal to 1.

Two series of simulations have been carried out, assuming this part of the bottom side either impermeable either perme-
able to flow. In this second case the initial pressure is assumed to remain constant during the simulation time along the per-
meable part of the boundary; all the other sides of the domain are impervious to the liquid and the salt. Assuming the top of
the salt-dome permeable is equivalent to assume first type boundary condition for the stream function along this part of the
boundary domain. This last schematization of the boundary conditions is more realistic. Parameters values are listed in Table
6.

On the permeable upper boundary salt diffusion is neglected; the concentration is assumed equal to the value of the leav-
ing particles along the part of the boundary where a leaving flux occurs and equal to zero where an entering flux occurs.
Fresh water condition and hydrostatic pressure distribution are initially assumed inside the domain.

Spatial domain has been discretized with a mesh of 1350 isosceles triangles (side 10 m) with 736 nodes. Dt is 60,000,00 s
and the maximum values of the CFL number and of the Peclet number are respectively 0.93 and 23.4. Steady-state conditions
are reached approximately after 400 years. In the simulations the following parameters values have been assumed:
bL = 20 m, bT = 2 m and Dm = 1.39d � 08 m2/s. Numerical results are shown in Figs. 29 and 30, respectively for the impervious



Fig. 20. Elder test: MAST FV/FE computed isopleths – level mesh 3rd (4, 10 and 20 years).
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and the open bottom side. The stream lines contours provide a good visualization of the hydrodynamic problem. A freshwa-
ter region with higher velocities can be observed in the upper part of the domain where flow is essentially driven by the
pressure gradient on the top side, while there is a brine pool along the bottom where flow with small velocities recirculates.
The outflow of the saltwater is on the upper right-hand corner of the domain. The choice of the boundary conditions affects
the numerical results. As expected, if the central bottom is assumed permeable, the velocity components normal to the
boundary cause a rise of the interface brine-freshwater region. The presence of these velocity components is evident from
the comparison of the stream line contours in the two cases of Figs. 29 and 30. In Fig. 31 the corresponding results obtained
by NAMMU [31] and FEFLOW [17] are shown. NAMMU is a FE Galerkin code where the governing equations are given by
solution mass conservation, transport equation of the solute and momentum conservation written in terms of solute mass
fraction, velocity and mass fraction of the concentrated solution; both the literature models discretize the PDEs governing
equations using rectangular elements: 1920 in FEFLOW simulations and 1600 for NAMMU simulations. Results of MAST
FV/FE are very close to the ones of the other literature models.

Assuming the top of the salt-dome as impervious, different simulations have been carried out changing the molecular
diffusion parameter and setting equal to zero the longitudinal and lateral dispersion coefficients. Results are shown in Figs.
32(a)–32(b); decreasing the value of Dm the freshwater zone moves deeper. The maximum value of the CFL numbers are
approximately the same as in the previous case, while the maximum Peclet numbers are respectively 362 and 36.2 for
the lowest and highest Dm coefficient. In Figs. 33(a)–33(b), the corresponding results obtained by Younes et al. [54] are



Fig. 21. Elder test: MAST FV/FE computed isopleths – level mesh 4th (4, 10 and 20 years).

Table 4
Flow direction in the central section (modified from [18]).

Authors Nel

<1000 1000–4000 4000–16,000 16,000–64,000 >64,000

Diersch [13] ; – – – –
Voss and Souza [53] – ; – – –
Oldenburg and Pruess [44] – ; " " –
Kolditz et al. [34] – #" " " –
Ackerer et al. [1] " " " –
Mazzia et al. [38] – ; – – –
Oltean and Bues [45] "# "# " "
Frolkovic and De Schepper [24] – ; " – "#
Diersch [18] – ; " – ;
MAST FV/FE " ; ; ; ;
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shown. The authors use a mesh with 2500 quadrilateral elements. The rise of the salt front in the model by Younes et al. is
higher than in MAST FV/FE, eventhough the comparison between the stream function contours is very good.



300 m

c = 0 

150 m 

600 m

c = 1 

T = Tmax

T = 0 

Fig. 22. Elder thermohaline test: spatial domain and boundary conditions.

Table 5
Elder thermohaline test – parameters values.

Parameter Symbol Units Value

Reference concentration C0 (kg/m3) 0
Temperature difference DT (K) 400
Reference temperature T0 (K) 0
Thermal capacity of fluid qcl (J/m3/K) 4.2 � 106

Thermal capacity of solid qscs (J/m3/K) 0
Molecular diffusion coefficient Dd (m2/s) 3.565 � 10�6

Longitudinal solute dispersivity bL (m) 0
Transversal solute dispersivity bT (m) 0
Permeability tensor k (m2) 4.845 � 10�13

Density ratio �a=Cs (–) 0.2
Thermal expansion coefficient �b (�C�1) 0.375 � 10�3

Porosity e (–) 0.1
Thermal conductivity of fluid kl (J/m/s/K) 0.65
Thermal conductivity of solid ks (J/m/s/K) 1.591
Longitudinal solute thermodispersivity aL (m) 0
Transversal solute thermodispersivity aT (m) 0
Reference fluid density q0 (kg/m3) 1000
Maximum density of the solution qs (kg/m3) 1200
Reference fluid viscosity l0 (kg/m/s) 0.001

Fig. 23(a). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 80 K, 4 years).
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4.4.2. The salt-dome thermohaline extension
The thermohaline extension of the salt-dome problem is obtained with a superimposition of a thermal gradient acting

upward that tends to destabilize the brine pool due to the arising buoyant forces. At the bottom of the aquifer a constant
temperature T = Tmax is assigned, while on the top side T = 0 is imposed (see Fig. 34). Simulation parameters are reported
in Table 7. The boundary conditions for the concentration are the same as in the convection problem. The central bottom
domain is assumed impermeable. Initially, hydrostatic pressure distribution, isothermal (T = 0) and freshwater conditions
are assumed inside the domain. In Figs. 35(a)–35(c), simulation results are shown at the simulation time 400 years for dif-
ferent values of the thermal gradient between the top and bottom side. The Dt is 20,000,00 s and the maximum CFL value is
0.83.

The temperature effect on the saltwater distribution remains negligible or small if compared with the single convection–
diffusion problem for small thermal gradient. Increasing the DT, vigorous temperature influences the brine pattern result in



Fig. 23(b). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 80 K, 10 years).

Fig. 23(c). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 80 K, 20 years).

Fig. 24(a). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 200 K, 4 years).
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form of a ‘wavy’ salinity field caused by the thermal buoyancy. The ‘wavy’ salinity characteristics are triggered in front of the
salt wedge by thermally driven eddies. As expected, this leads to an increased saltwater effluent on top of the aquifer. A sim-
ilar behaviour is evident in the results computed by Diersch [17] in FEFLOW (see Figs. 36(a)–36(c).

4.5. Computational costs and sensitivity analysis

An estimation of the CPU times for the computation of the two convective and of the diffusive steps, as well as for the
computation of the approximated potential, has been carried out. Results are reported in Table 8 in terms of the mean
CPU times per element, for some of the tests previously shown. A processor Intel 6400 2.13 GHz has been used. The compu-
tation of the convective prediction and correction steps is the most demanding one. The CPU time required for the solution of
the first diffusive system in the W unknowns is about half the convective steps time, while the solution of the second dif-
fusive system needs approximately one magnitude order less than the convective steps time. The CPU time for the compu-
tation of the approximated scalar function is similar to the one for the first diffusive system.



Fig. 24(b). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 200 K, 10 years).

Fig. 24(c). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 200 K, 20 years).

Fig. 25(a). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 400 K, 4 years).
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The growth of the computational time per element and per time step versus the number of elements has been investi-
gated in order to assess the relative cost of the two diffusive correction systems and of the approximated potentials calcu-
lation. These steps require the solution of a large linear system and are the non-‘explicit’ component of the algorithm. The
Henry test has been chosen for this investigation. A mesh with 100 isosceles triangular elements (see Fig. 7(a)) has been gen-
erated for next four refinements as described in Section 4.3.1 for the Elder salt test; the time step for the coarsest mesh is
20 s, and it has been halved at each refinement. Results are shown in Fig. 37(a). Observe that, at least up to the maximum
number of elements tested in the experiments, the CPU time components relative to the convective steps is almost indepen-
dent on the elements number. The small decrement of the average CPU time of the convective component can be related to
the increasing CFL numbers obtained by partitioning and to the best aptitude of the algorithm to work with CFL numbers
greater than one [2,3]. The two diffusive systems and the one for the approximated potential have the same structure.
The differences in the CPU mean times depend on the conditioning numbers of the matrices of the three linear systems.



Fig. 25(b). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 400 K, 10 years).

Fig. 25(c). Elder thermohaline test: MAST FV/FE isopleths, temperatures (DT 400 K, 20 years).

Fig. 26(a). Elder thermohaline test: MAST FV/FE isopleths, temperatures – level mesh 0th (20 years).
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The growth of the CPU times with the element number have the same trend for the three systems, eventhough the condition
number of the matrix of the system of the second diffusive step is lower than the condition number of the other two matri-
ces, which values are quite similar. It is also important to observe that the growth of the mean CPU time per element with the
element number is less than linear.

The same trend of the mean CPU times has been observed for the refinement test of the Elder salt convection problem (see
Section 4.3.1), as reported in Fig. 37(b). It seems that the intrinsic instability of the physical and numerical processes, with a
variable number of captured fingers (at least for the coarser mesh levels 0th, 1st and 2nd), as previously discussed in Section
4.3.1, does not affect the CPU mean time values. Mazzia et al. [38], analysing an analogous instable convection test case, ob-
tained CPU times strongly affected by the instability of the problem, growing with the mesh refinement much more than
linearly.



Fig. 26(b). Elder thermohaline test: MAST FV/FE isopleths, temperatures – level mesh 2nd (20 years).

Fig. 26(c). Elder thermohaline test: MAST FV/FE isopleths, temperatures – level mesh 3rd (20 years).

Fig. 26(d). Elder thermohaline test: MAST FV/FE isopleths, temperatures – level mesh 4th (20 years).
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A second analysis has been carried out to test the sensitivity of the computational cost with respect to the size of the time
step. Using the computational mesh of the Henry test with 1600 elements, the CPU mean time values for the four compo-
nents have been computed increasing the size of the CFL number by changing the time step size. Results are shown in Fig. 38.
The CPU mean times for the potential scalar function, as well as for both the diffusive steps are found to be almost indepen-
dent from the size of the CFL number, while the growth of the computational times required for the two convective steps is
much less than linear.

Finally, the sensitivity of the result accuracy with respect to the CFL number has been investigated, using the same test
case with the same computational mesh. Numerical simulations have been carried out using Dt = 12.5 s and Dt = 200 s and
the maximum CFL numbers are, respectively 0.66 and 10.516. The isopleths for 25%, 50% and 75% of the maximum concen-
tration are shown in Fig. 39. These results can be also compared with the original ones, computed with Dt = 25 s and a max-
imum CFL number about 1.3137.

This test shows the result sensitivity with respect to the CFL number to be very small.



Fig. 27. Elder thermohaline test: FEFLOW [16] isopleths (10, 15 20 years from left to right, DT 400 K, 9900 quadrilateral elements).

c = 0

h = ha h = hb

900 m
 300 m 
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c = 1
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Fig. 28. Salt-dome test: spatial domain and boundary conditions.
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A 1D benchmark problem solved in a 2D grid has been used to test the stability and the accuracy of the solution of the
MAST FV/FE scheme within a wide range of Peclet number values. The PDE describing the movement of a tracer in a semi-
infinite column has been considered; the velocity field is assumed known and constant in time, q = (1.0), with porosity equal
to one and D = diag(D1, D1). The boundary conditions are c = 1 at x = 0 and c = 0 at x =1. Zero relative concentration is



Fig. 29. Salt-dome test: MAST FV/FE computed isopleths, stream function contours and velocity field (impervious bottom; bL = 20 m, bT = 2 m,
Dm = 1.39d � 08 m2/s).

Table 6
Salt-dome salt convection–diffusion test – parameters values.

Parameter Symbol Units Value

Reference concentration C0 (kg/m3) 0
Molecular diffusion coefficient Dd (m2/s) 1.39, 5, 50 � 10�8

Longitudinal solute dispersivity bL (m) 20, 0, 0
Transversal solute dispersivity bT (m) 2, 0, 0
Permeability tensor k (m2) 4.845 � 10�13

Density ratio �a=Cs (–) 0.236108
Porosity e (–) 0.2
Reference fluid density q0 (kg/m3) 997
Maximum density of the solution qs (kg/m3) 1200
Reference fluid viscosity l0 (kg/m/s) 0.00089
Freshwater head right upper corner hb (m) 10.228
Freshwater head left upper corner ha (m) 20.456
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Fig. 30. Salt-dome test: MAST FV/FE computed isopleths, stream function contours and velocity field (open bottom; bL = 20 m, bT = 2 m, Dm = 1.39d � 08 m2/s).

Fig. 31. Salt-dome test: NAMMU (left) [31] and FEFLOW (right) [17] computed isopleths (bL = 20 m, bT = 2 m, Dm = 1.39d � 08 m2/s).

Fig. 32(a). Salt-dome test: MAST FV/FE computed isopleths and velocity field (impervious bottom; bL = 0, bT = 0, Dm = 5d � 08 m2/s).
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assumed as initial condition. The problem is simulated using a rectangular domain [0,1] � [0,0.025] discretized with 1200
triangular isosceles elements (see Fig. 7(a)). The analytical solution for this problem is [6,37]:
cðx; tÞ ¼ 1
2

erfc
x� qx1

t

2
ffiffiffiffiffiffiffiffi
D1t
p þ exp

qx1
x

D1
� erfc

xþ qx1
t

2
ffiffiffiffiffiffiffiffi
D1t
p

� �
: ð73Þ
The simulation time is t = 0.7 s. Different simulations have been carried out changing the dispersion coefficient D1 values, for
a CFL number equal to 0.75; the values of D1, of Peclet number as well as of L2 norm of the errors are shown in Table 9. The
error and the numerical diffusion in the solution of the proposed scheme become significant when the advection terms be-
come dominant with respect to the diffusive ones, due to the 1st spatial approximation order in the convective steps, but the
solution remains always stable also for the highest Peclet numbers.



Fig. 33(a). Salt-dome test: Younes et al. [54] computed isopleths and stream function contours (impervious bottom; bL = 0, bT = 0, Dm = 5d � 08 m2/s).

Fig. 33(b). Salt-dome test: Younes et al. [54] computed isopleths and stream function contours (impervious bottom; bL = 0, bT = 0, Dm = 5d � 07 m2/s).
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Fig. 34. Salt-dome thermohaline test: domain and boundary conditions.

Fig. 32(b). Salt-dome test: MAST FV/FE computed isopleths and velocity field (impervious bottom; bL = 0, bT = 0, Dm = 5d � 07 m2/s).
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Fig. 35(a). Salt-dome thermohaline test: MAST FV/FE computed isopleths, temperatures and stream function contours (DT 80 K).

Fig. 35(b). Salt-dome thermohaline test: MAST FV/FE computed isopleths, temperatures and stream function contours (DT 133.33 K).

Table 7
Salt-dome thermohaline test – parameters values.

Parameter Symbol Units Value

Reference concentration C0 (kg/m3) 0
Temperature difference DT (K) 80, 133.33, 200
Reference temperature T0 (K) 1
Thermal capacity of fluid qcl (J/m3/K) 4.2 � 106

Thermal capacity of solid qscs (J/m3/K) 2.52 � 10�6

Molecular diffusion coefficient Dd (m2/s) 1.39 � 10�8

Longitudinal solute dispersivity bL (m) 20
Transversal solute dispersivity bT (m) 2
Permeability tensor k (m2) 4.845 � 10�13

Density ratio �a=Cs (–) 0.236108
Thermal expansion coefficient �b (�C�1) 5 � 10�4

Porosity e (–) 0.2
Thermal conductivity of fluid kl (J/m/s/K) 0.65
Thermal conductivity of solid ks (J/m/s/K) 3
Longitudinal solute thermodispersivity aL (m) 20
Transversal solute thermodispersivity aT (m) 2
Reference fluid density q0 (kg/m3) 997
Maximum density of the solution qs (kg/m3) 1200
Reference fluid viscosity l0 (kg/m/s) 0.00089
Freshwater head right upper corner hb (m) 10.228
Freshwater head left upper corner ha (m) 20.456
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Fig. 35(c). Salt-dome thermohaline test: MAST FV/FE computed isopleths, temperatures and stream function contours (DT 200 K).

Fig. 36(a). Salt-dome thermohaline test: FEFLOW computed isopleths, temperatures and velocity field (DT 80 K) [17].

Fig. 36(b). Salt-dome thermohaline test: FEFLOW computed isopleths, temperatures and velocity field (DT 133.33 K) [17].

Fig. 36(c). Salt-dome thermohaline test: FEFLOW computed isopleths, temperatures and velocity field (DT 200 K) [17].
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Fig. 37(a). Mean CPU times (Henry test).
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Fig. 37(b). Mean CPU times (Elder salt convection test).
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Fig. 38. Effects of the CFL number on the CPU times (Henry test).

Table 8
Mean CPU time values.

Test Ne Approximately potential Convective Diffusive SF Diffusive C

Henry 1600 1.2728E�05 6.16862E�05 9.01693E�06 3.14128E�06
Elder 1414 8.0114E�06 8.13572E�05 6.99847E�06 2.90068E�06
Salt-dome 5400 1.81E�05 6.12E�05 1.76E�05 2.91E�06
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Fig. 39. Henry test: MAST FV/FE computed isopleths with different Dt (Nel 1600).

Table 9
Peclet numbers and L2 norms of the errors for different diffusion coefficients.

D1 Peclet L2

2.00E�02 0.32 1.47E�03
1.00E�02 0.645 2.38E�03
5.00E�03 1.29 3.75E�03
1.00E�03 6.45 8.58E�03
5.00E�04 12.9 1.06E�02
1.00E�04 64.55 1.46E�02
5.00E�05 129.1 1.57E�02
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5. Conclusions

A novel methodology for the simulation of thermohaline processes in variable-density flow field has been presented. The
previously proposed MAST procedure is applied for the solution of these groundwater flow and transport problems. The
study is limited to 2D cases.

Mass-based stream function is used to describe the flow field. The method splits the solution of the convective compo-
nents, solved by means of a FV marching in space and time (MAST) method, from the diffusive ones, solved by means of a
standard Galerkin FE method.

The main advantage of the algorithm is that the first and the second non-linear sub-problem can be solved locally ele-
ment after element, without any stability restriction on the size of the time step.

The proposed procedure is validated using different literature tests and results seem in good agreement with the corre-
sponding ones provided by other numerical codes. The method shows stability also for CFL values greater than 1 in a wide
range of Peclet number, as well as robustness with respect to the mesh density, also for tests subject to initial instability (the
Elder problem).

An analysis of the CPU mean time values has been also carried out. The computation of both convective components is the
most demanding one, but remains approximately the same per element increasing the element number; the computation of
the approximated potential and of the diffusive systems are, respectively one half and about 1 magnitude order less than the
one for the convective steps, and the increment of the CPU specific time with respect to the element number is much less
than linear.

The present procedure presents the following advantages with respect to other FV/FE methods available in the literature
(see for example [37–39]): (1) the same time step can be used for both the convective and the diffusive correction steps,
because of the unconditional stability of the MAST procedure; (2) refining the computational mesh, the growth of the
CPU time against the number of elements is much less than linear.

MAST FV/FE scheme can be extended to the study of 3D density-dependent groundwater problems by writing the mass
conservation equation of the liquid phase in terms of the piezometric head h (or fluid pressure p) and computing the velocity
components qi (i = 1,2,3) as function of the spatial gradients of h (or p) known at the end of the previous time step.

One of the main disadvantages of the actual version of the proposed model respect to other literature FV/FE methods
models [37–39] is that, since the diffusive correction step is solved by means of a standard Galerkin FE scheme, the dual
mesh has to be used also in the convective steps. The use of other FE methods that honour the mass continuity inside the
elements (as the MHFE [37–39]) could help in further reducing the algorithm computational time.
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Appendix 1

The finite element formulation for the pollutant (heat) transport problem in the correction step

The following dissertation concerning the FE formulation for the pollutant transport problem is analogous for the heat
transport. For brevity, only the first one will be studied.

Given the following PDE (the second in system 24):
e
@C
@t
�r � ðDkþ1=2rCÞ ¼ �r � ðDrCÞk; ðA:1Þ
in the unknown C, the FE approximation of Eq. (A.1) is:
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where X is the spatial integration domain, wm is the Galerkin shape function and bC is the interpolation function, defined as
bCðx1; x2; tÞ ¼
X

m¼1;N

wmðx1; x2ÞCmðtÞ; ðA:3Þ
where Cm are the unknown nodal values.
Assuming a constant value for the porosity e along the domain, applying the Green’s lemma to the second integral on the

l.h.s. and to the integral on the r.h.s. of Eq. (A.2), one gets:
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where LX is the line boundary of X and the integral lines on the l.h.s. and on the r.h.s. represent the diffusive boundary
fluxes; these are assumed equal to zero along both impervious and pervious boundary sides, as specified in the section
on the boundary conditions for the second correction systems (see Section 3.7.2).

The first term on the l. h. s. of Eq. (A.4) is the capacity term. In order to improve stability (Gambolati, 1994), the
approximations:
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are made, where Xm is the area of the polygon around node m delimited by the centers of mass. To balance the mass error
introduced by changing the first to second spatial approximation order, moving from the prediction to the correction step,
the further approximation is made in Eq. (A.4):
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where rm is the area of the polygon delimited by the axis centers.
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